Mark Scheme (Results)

October 2020

Pearson Edexcel International Advanced Level In Further Pure Mathematics F2 (WFM02/01)

Edexcel and BTEC Qualifications

Edexcel and BTEC qualifications are awarded by Pearson, the UK's largest awarding body. We provide a wide range of qualifications including academic, vocational, occupational and specific programmes for employers. For further information visit our qualifications websites at www.edexcel.com or www.btec.co.uk. Alternatively, you can get in touch with us using the details on our contact us page at www.edexcel.com/contactus.

Pearson: helping people progress, everywhere

Pearson aspires to be the world's leading learning company. Our aim is to help everyone progress in their lives through education. We believe in every kind of learning, for all kinds of people, wherever they are in the world. We've been involved in education for over 150 years, and by working across 70 countries, in 100 languages, we have built an international reputation for our commitment to high standards and raising achievement through innovation in education. Find out more about how we can help you and your students at: www.pearson.com/uk

October 2020
Publications Code WFM02_01_2010_MS
All the material in this publication is copyright
© Pearson Education Ltd 2020

General Marking Guidance

- All candidates must receive the same treatment. Examiners must mark the first candidate in exactly the same way as they mark the last.
- Mark schemes should be applied positively. Candidates must be rewarded for what they have shown they can do rather than penalised for omissions.
- Examiners should mark according to the mark scheme not according to their perception of where the grade boundaries may lie.
- There is no ceiling on achievement. All marks on the mark scheme should be used appropriately.
- All the marks on the mark scheme are designed to be awarded. Examiners should always award full marks if deserved, i.e. if the answer matches the mark scheme. Examiners should also be prepared to award zero marks if the candidate's response is not worthy of credit according to the mark scheme
- Where some judgement is required, mark schemes will provide the principles by which marks will be awarded and exemplification may be limited.
- When examiners are in doubt regarding the application of the mark scheme to a candidate's response, the team leader must be consulted.
- Crossed out work should be marked UNLESS the candidate has replaced it with an alternative response.

PEARSON EDEXCEL IAL MATHEMATICS

General Instructions for Marking

1. The total number of marks for the paper is 75
2. The Edexcel Mathematics mark schemes use the following types of marks:

- M marks: Method marks are awarded for 'knowing a method and attempting to apply it^{\prime}, unless otherwise indicated.
- A marks: Accuracy marks can only be awarded if the relevant method (M) marks have been earned.
- B marks are unconditional accuracy marks (independent of M marks)
- Marks should not be subdivided.

3. Abbreviations

These are some of the traditional marking abbreviations that will appear in the mark schemes.

- bod - benefit of doubt
- ft - follow through
- the symbol $\sqrt{ }$ will be used for correct ft
- cao - correct answer only
- cso - correct solution only. There must be no errors in this part of the question to obtain this mark
- isw - ignore subsequent working
- awrt - answers which round to
- SC: special case
- oe - or equivalent (and appropriate)
- d... or dep - dependent
- indep - independent
- dp decimal places
- sf significant figures
- * The answer is printed on the paper or ag- answer given
- \square or d... The second mark is dependent on gaining the first mark

4. All A marks are 'correct answer only' (cao.), unless shown, for example, as A1 ft to indicate that previous wrong working is to be followed through. After a misread however, the subsequent A marks affected are treated as A ft, but manifestly absurd answers should never be awarded A marks.
5. For misreading which does not alter the character of a question or materially simplify it, deduct two from any A or B marks gained, in that part of the question affected.
6. If a candidate makes more than one attempt at any question:

- If all but one attempt is crossed out, mark the attempt which is NOT crossed out.
- If either all attempts are crossed out or none are crossed out, mark all the attempts and score the highest single attempt.

7. Ignore wrong working or incorrect statements following a correct answer.

General Principles for Further Pure Mathematics Marking

(But note that specific mark schemes may sometimes override these general principles).

Method mark for solving 3 term quadratic:

1. Factorisation

$\left(x^{2}+b x+c\right)=(x+p)(x+q)$, where $|p q|=|c|$, leading to $\mathrm{x}=$. $\left(a x^{2}+b x+c\right)=(m x+p)(n x+q)$, where $|p q|=|c|$ and $|m n|=|a|$, leading to $\mathrm{x}=\ldots$

2. Formula

Attempt to use the correct formula (with values for a, b and c).

3. Completing the square

Solving $x^{2}+b x+c=0:\left(x \pm \frac{b}{2}\right)^{2} \pm q \pm c=0, q \neq 0$, leading to $\mathrm{x}=\ldots$

Method marks for differentiation and integration:

1. Differentiation

Power of at least one term decreased by 1. $\left(x^{n} \rightarrow x^{n-1}\right)$

2. Integration

Power of at least one term increased by 1. ($x^{n} \rightarrow x^{n+1}$)

Use of a formula

Where a method involves using a formula that has been learnt, the advice given in recent examiners' reports is that the formula should be quoted first.

Normal marking procedure is as follows:

Method mark for quoting a correct formula and attempting to use it, even if there are small errors in the substitution of values.

Where the formula is not quoted, the method mark can be gained by implication from correct working with values, but may be lost if there is any mistake in the working.

Exact answers

Examiners' reports have emphasised that where, for example, an exact answer is asked for, or working with surds is clearly required, marks will normally be lost if the candidate resorts to using rounded decimals.

Question Number	Scheme	Marks
4 (a)	$\begin{aligned} & \|18 \sqrt{3}-18 \mathrm{i}\|=18 \sqrt{(3+1)}=36 \\ & \tan \theta=\frac{-18}{18 \sqrt{3}} \quad \theta=-\frac{\pi}{6}, \quad 18 \sqrt{3}-18 \mathrm{i}=36\left(\cos \left(-\frac{\pi}{6}\right)+\mathrm{i} \sin \left(-\frac{\pi}{6}\right)\right) \end{aligned}$	B1 M1,A1cao
(b)	$\begin{aligned} z^{4} & =36\left(\cos -\frac{\pi}{6}+\mathrm{i} \sin -\frac{\pi}{6}\right)=36\left(\cos \left(2 k \pi-\frac{\pi}{6}\right)+\mathrm{i} \sin \left(2 k \pi-\frac{\pi}{6}\right)\right) \\ z & =\sqrt{6}\left(\cos \left(\frac{12 k \pi-\pi}{24}\right)+\mathrm{i} \sin \left(\frac{12 k \pi-\pi}{24}\right)\right) \end{aligned}$	M1 M1
	$k=0 \quad z_{0}=\sqrt{6}\left(\cos \left(\frac{-\pi}{24}\right)+\mathrm{i} \sin \left(\frac{-\pi}{24}\right)\right)=\sqrt{6} \mathrm{e}^{\mathrm{i}\left(-\frac{\pi}{24}\right)}$	B1
	$k=1 \quad z_{1}=\sqrt{6}\left(\cos \left(\frac{11 \pi}{24}\right)+\mathrm{i} \sin \left(\frac{11 \pi}{24}\right)\right)=\sqrt{6} \mathrm{e}^{\mathrm{i} \frac{11 \pi}{24}}$	A1ft
	$k=2 \quad z_{2}=\sqrt{6}\left(\cos \left(\frac{23 \pi}{24}\right)+\mathrm{i} \sin \left(\frac{23 \pi}{24}\right)\right)=\sqrt{6} \mathrm{e}^{\mathrm{i} \frac{23 \pi}{24}}$	
	$k=-1 \quad z_{3}=\sqrt{6}\left(\cos \left(-\frac{13 \pi}{24}\right)+\mathrm{i} \sin \left(-\frac{13 \pi}{24}\right)\right)=\sqrt{6} \mathrm{e}^{\mathrm{i}\left(-\frac{13 \pi}{24}\right)}$	A1ft (5)
(a)		
B1	Correct modulus	
M1	Attempt argument using $\tan \theta=\frac{ \pm 18}{18 \sqrt{3}}$ or other valid method. Can be implied by $\theta= \pm \frac{\pi}{6}$	
A1cao (b)	Correct answer in the required form.	
M1	Valid method for generating at least 2 roots, rotation through $\frac{\pi}{2}$ accepted	
M1	Apply de Moivre or use the rotation method	
B1	Any one correct root	
A1ft	Second root in required form	
A1ft	All 4 roots in the required form	
NB	Follow through their $\sqrt[4]{36}$ but 36 not acceptable. Argument in degrees - M1M1B1A0A0 (ie treat as mis-read) Incorrect argument: B0A1ftA1ft available Answers in $r(\cos \theta+\mathrm{i} \sin \theta)$ form - deduct final A marks	

Question Number	Scheme Marks
6.	$\begin{array}{l\|l} \frac{\mathrm{d} y}{\mathrm{~d} x}+\frac{(x \cot x+2)}{x} y=\frac{4 \sin x}{x^{2}} & \mathrm{~B} 1 \\ \mathrm{IF}=\mathrm{e}^{\int \frac{(x \cot x+2)}{x} \mathrm{~d} x} \\ =\mathrm{e}^{(\ln \sin x+2 \ln x)} \\ =x^{2} \sin x & \mathrm{M} 1 \\ \frac{\mathrm{~d}}{\mathrm{~d} x}(\text { their } \mathrm{IF} \times y)=\text { their } \mathrm{IF} \times{ }^{-2 \sin x} x^{2} \\ \mathrm{~A} 1 \\ \mathrm{~A} 1 \\ y x^{2} \sin x=\int 4 \sin ^{2} x \mathrm{~d} x=4 \int \frac{1-\cos 2 x}{2} \mathrm{~d} x=4\left(\frac{x}{2}-\frac{1}{4} \sin 2 x\right) & (+C) \\ y=\frac{2 x-\sin 2 x+C}{x^{2} \sin x} \quad \text { oe } & \text { dM1A1 } \\ \text { M1 } \end{array}$
B1 M1 A1 A1 M1 dM1 A1 A1	Divide through by x^{2} Attempt an IF of the form $\mathrm{e}^{\int \frac{k(x \cot x+2)}{x} \mathrm{~d} x}$ $(\ln \sin x+2 \ln x)$ Correct IF Multiply through by their IF and write LHS in form shown - can be implied by next line. Allow if IF is seen instead of their function provided an IF has been attempted. Allow use of their RHS Attempt to integrate $\sin ^{2} x$, including using $\sin ^{2} x=\frac{1}{2}(1 \pm \cos 2 x) \quad \cos 2 x \rightarrow k \sin 2 x$ depends on previous M mark Correct integration, constant not needed Include the constant and treat it correctly. Must have $y=\ldots$

Question Number	Scheme Marks
8 (a)	$\begin{aligned} & x=\mathrm{e}^{u} \quad \frac{\mathrm{~d} x}{\mathrm{~d} u}=\mathrm{e}^{u} \quad \text { or } \frac{\mathrm{d} u}{\mathrm{~d} x}=\mathrm{e}^{-u} \quad \text { or } \frac{\mathrm{d} x}{\mathrm{~d} u}=x \\ & \frac{\mathrm{~d} y}{\mathrm{~d} x}=\frac{\mathrm{d} y}{\mathrm{~d} u} \times \frac{\mathrm{d} u}{\mathrm{~d} x}=\mathrm{e}^{-u} \frac{\mathrm{~d} y}{\mathrm{~d} u} \\ & \frac{\mathrm{~d}^{2} y}{\mathrm{~d} x^{2}}=-\mathrm{e}^{-u} \frac{\mathrm{~d} u}{\mathrm{~d} x} \frac{\mathrm{~d} y}{\mathrm{~d} u}+\mathrm{e}^{-u} \frac{\mathrm{~d}^{2} y}{\mathrm{~d} u^{2}} \frac{\mathrm{~d} u}{\mathrm{~d} x}=\mathrm{e}^{-2 u}\left(-\frac{\mathrm{d} y}{\mathrm{~d} u}+\frac{\mathrm{d}^{2} y}{\mathrm{~d} u^{2}}\right) \\ & x^{2} \frac{\mathrm{~d}^{2} y}{\mathrm{~d} x^{2}}+3 x \frac{\mathrm{~d} y}{\mathrm{~d} x}-8 y=4 \ln x \\ & \mathrm{e}^{2 u} \times \mathrm{e}^{-2 u}\left(-\frac{\mathrm{d} y}{\mathrm{~d} u}+\frac{\mathrm{d}^{2} y}{\mathrm{~d} u^{2}}\right)+3 \mathrm{e}^{u} \times \mathrm{e}^{-u} \frac{\mathrm{~d} y}{\mathrm{~d} u}-8 y=4 \ln \left(\mathrm{e}^{u}\right) \\ & \frac{\mathrm{d}^{2} y}{\mathrm{~d} u^{2}}+2 \frac{\mathrm{~d} y}{\mathrm{~d} u}-8 y=4 u \quad * \end{aligned}$
$\begin{gathered} \text { B1 } \\ \text { M1 } \\ \text { M1 } \\ \text { A1 } \\ \text { dM1 } \\ \text { A1*cso } \end{gathered}$	$\frac{\mathrm{d} x}{\mathrm{~d} u}=\mathrm{e}^{u}$ oe as shown seen explicitly or used Obtaining $\frac{\mathrm{d} y}{\mathrm{~d} x}$ using chain rule here or seen later Obtaining $\frac{\mathrm{d}^{2} y}{\mathrm{~d} x^{2}}$ using product rule (penalise lack of chain rule by the A mark) Correct expression for $\frac{\mathrm{d}^{2} y}{\mathrm{~d} x^{2}}$ any equivalent form Substituting in the equation to eliminate x (u and y only). Depends on the $2^{\text {nd }} \mathrm{M}$ mark Obtaining the given result from completely correct work
	ALTERNATIVE 1 $\begin{aligned} & x=\mathrm{e}^{u} \quad \frac{\mathrm{~d} x}{\mathrm{~d} u}=\mathrm{e}^{u}=x \\ & \frac{\mathrm{~d} y}{\mathrm{~d} u}=\frac{\mathrm{d} y}{\mathrm{~d} x} \times \frac{\mathrm{d} x}{\mathrm{~d} u}=x \frac{\mathrm{~d} y}{\mathrm{~d} x} \\ & \frac{\mathrm{~d}^{2} y}{\mathrm{~d} u^{2}}=1 \frac{\mathrm{~d} x}{\mathrm{~d} u} \times \frac{\mathrm{d} y}{\mathrm{~d} x}+x \frac{\mathrm{~d}^{2} y}{\mathrm{~d} x^{2}} \times \frac{\mathrm{d} x}{\mathrm{~d} u}=x \frac{\mathrm{~d} y}{\mathrm{~d} x}+x^{2} \frac{\mathrm{~d}^{2} y}{\mathrm{~d} x^{2}} \\ & x^{2} \frac{\mathrm{~d}^{2} y}{\mathrm{~d} x^{2}}=\frac{\mathrm{d}^{2} y}{\mathrm{~d} u^{2}}-\frac{\mathrm{d} y}{\mathrm{~d} u} \\ & \left(\frac{\mathrm{~d}^{2} y}{\mathrm{~d} u^{2}}-\frac{\mathrm{d} y}{\mathrm{~d} u}\right)+3 x \times \frac{1}{x} \frac{\mathrm{~d} y}{\mathrm{~d} u}-8 y=4 \ln \left(\mathrm{e}^{u}\right) \\ & \frac{\mathrm{d}^{2} y}{\mathrm{~d} u^{2}}+2 \frac{\mathrm{~d} y}{\mathrm{~d} u}-8 y=4 u \quad * \end{aligned}$

Question Number	Scheme Marks
$\begin{gathered} \text { B1 } \\ \text { M1 } \\ \text { M1 } \\ \text { A1 } \\ \text { dM1 } \\ \text { A1*cso } \end{gathered}$	$\frac{\mathrm{d} x}{\mathrm{~d} u}=\mathrm{e}^{u}$ oe as shown seen explicitly or used Obtaining $\frac{\mathrm{d} y}{\mathrm{~d} u}$ using chain rule here or seen later Obtaining $\frac{\mathrm{d}^{2} y}{\mathrm{~d} u^{2}}$ using product rule (penalise lack of chain rule by the A mark) Correct expression for $\frac{\mathrm{d}^{2} y}{\mathrm{~d} u^{2}}$ any equivalent form Substituting in the equation to eliminate x (u and y only). Depends on the $2^{\text {nd }} \mathrm{M}$ mark Obtaining the given result from completely correct work
	ALTERNATIVE 2: $\begin{aligned} & u=\ln x \frac{\mathrm{~d} u}{\mathrm{~d} x}=\frac{1}{x} \\ & \frac{\mathrm{~d} y}{\mathrm{~d} x}=\frac{\mathrm{d} y}{\mathrm{~d} u} \times \frac{\mathrm{d} u}{\mathrm{~d} x}=\frac{1}{x} \frac{\mathrm{~d} y}{\mathrm{~d} u} \\ & \frac{\mathrm{~d}^{2} y}{\mathrm{~d} x^{2}}=-\frac{1}{x^{2}} \frac{\mathrm{~d} y}{\mathrm{~d} u}+\frac{1}{x} \frac{\mathrm{~d}^{2} y}{\mathrm{~d} u^{2}} \times \frac{\mathrm{d} u}{\mathrm{~d} x}=-\frac{1}{x^{2}} \frac{\mathrm{~d} y}{\mathrm{~d} u}+\frac{1}{x^{2}} \frac{\mathrm{~d}^{2} y}{\mathrm{~d} u^{2}} \\ & x^{2}\left(-\frac{1}{x^{2}} \frac{\mathrm{~d} y}{\mathrm{~d} u}+\frac{1}{x^{2}} \frac{\mathrm{~d}^{2} y}{\mathrm{~d} u^{2}}\right)+3 x \times \frac{1}{x} \frac{\mathrm{~d} y}{\mathrm{~d} u}-8 y=4 u \end{aligned}$ $\frac{\mathrm{d}^{2} y}{\mathrm{~d} u^{2}}+2 \frac{\mathrm{~d} y}{\mathrm{~d} u}-8 y=4 u$
	Notes as for main scheme

There are also other solutions which will appear, either starting from equation II and obtaining equation I , or mixing letters x, y and u until the final stage.
Mark as follows:
B1 as shown in schemes above
M1 obtaining a first derivative with chain rule
M1 obtaining a second derivative with product rule
A1 correct second derivative with 2 or 3 variables present
dM1 Either substitute in equation I or substitute in equation II according to method chosen and obtain an equation with only y and u (following sub in eqn I) or with only x and y (following sub in eqn II)
A1cso Obtaining the required result from completely correct work

Pearson Education Limited. Registered company number 872828
with its registered office at 80 Strand, London, WC2R ORL, United Kingdom

